doi:10.5194/bgd-9-18175-2012 Discussions
© Author(s) 2012. CC Attribution 3.0 License.

Biogeosciences Discuss., 9, 18175-18210, 2012 "K . .
www.biogeosciences-discuss.net/9/18175/2012/ ‘GG' Blogeosmences

Automated quality control methods for
sensor data: a novel observatory
approach

J.R. Taylor1’2 and H. L. Loescher'*

National Ecological Observatory Network, Boulder, Colorado, USA
®Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA

Received: 5 November 2012 — Accepted: 21 November 2012 — Published: 14 December 2012
Correspondence to: J. R. Taylor (jtaylor@neoninc.org)

Published by Copernicus Publications on behalf of the European Geosciences Union.

18175

BGD
9, 18175-18210, 2012

Automated QA/QC
methods

J. R. Taylor and
H. L. Loescher

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/18175/2012/bgd-9-18175-2012-print.pdf
http://www.biogeosciences-discuss.net/9/18175/2012/bgd-9-18175-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

National and international networks and observatories of terrestrial-based sensors are
emerging rapidly. As such, there is demand for a standardized approach to data qual-
ity control, as well as interoperability of data among sensor networks. The National
Ecological Observatory Network (NEON) has begun constructing their first terrestrial
observing sites with 60 locations expected to be distributed across the US by 2017.
This will result in over 14 000 automated sensors recording more than > 100 Tb of data
per year. These data are then used to create other datasets and subsequent “higher-
level” data products. In anticipation of this challenge, an overall data quality assurance
plan has been developed and the first suite of data quality control measures defined.
This data-driven approach focuses on automated methods for defining a suite of plau-
sibility test parameter thresholds. Specifically, these plausibility tests scrutinize data
range, persistence, and stochasticity on each measurement type by employing a suite
of binary checks. The statistical basis for each of these tests is developed and the
methods for calculating test parameter thresholds are explored here. While these tests
have been used elsewhere, we apply them in a novel approach by calculating their
relevant test parameter thresholds. Finally, implementing automated quality control is
demonstrated with preliminary data from a NEON prototype site.

1 Introduction

Observational ecology has historically focused on plot-stand-ecosystem-watershed
scales that are meant to be representative of a larger ecosystem or region. By
measuring many ecological variables in great detail within these scales, conclusions
about larger-scale behavior can be drawn (Schneider, 2001; Schimel et al., 2011).
With the advent of satellite observations, measurements can be made on a global
scale, but the number of ecologically relevant variables is often limited and the link-
age to ground-based measurements can be lacking (DeFries et al., 2002). In an
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effort to envelop a larger sphere of inference and to increase our ability to scale
ecology in time and space, many terrestrial-based research stations have merged
to form national and international networks (and observatories) in which many mea-
surements can be made at numerous locations; e.g. Long Term Ecological Research
(LTER: Franklin et al., 1990); United States Climate Reference Network (USCRN: Karl
et al., 1995); Department of Energy — Atmospheric Radiation Measurement network
(DOE-ARM: Stokes and Schwartz, 1994); FLUXNET (Baldocchi et al., 2001); Global
Lakes Ecological Observation Network (GLEON: Hanson, 2008); Critical Zone Obser-
vatory (CZO: Brantley et al., 2006); Integrated Carbon Observatory System (ICOS:
http://www.icos-infrastructure.eu); Terrestrial Environmental Observatories (TERENO:
Zacharias et al., 2011); and now the National Ecological Observatory Network (NEON:
Keller et al., 2008). In order to facilitate these observations, modern technological ad-
vances have allowed for vast arrays of automated environmental sensors that can
record high-frequency data with minimal manual intervention and at relatively low cost
(Porter et al., 2009). The primary challenge associated with these sensor networks
is the establishment of consistent data standards and compatibility across the entire
network. The final goal is to develop a framework for comparison among these net-
works and observatories by using accepted, statistically defensible approaches when
comparing whole measurement systems or individual instruments as part of a larger
rigorous quality assurance and data quality control program (Loescher et al., 2005;
Ocheltree and Loescher, 2007).

The NEON is currently constructing a continental scale observatory consisting of 20
eco-domains in the US; including Alaska, Hawaii, and Puerto Rico (Fig. 1). Each of
NEON’s eco-domains has one representative “Core site” that will monitor the location
continuously for 30 yr and two “Relocatable sites” that will also operate continuously
but will move every 5-10yr in order to address specific research directives of interest
for that domain (as decided by the research/user community). All the sites will contain
a large suite of automated terrestrial sensors mounted on towers, placed in streams,
and distributed in arrays of soil plots. In addition, 10 mobile towers (with supporting
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infrastructure) will be made available to rapidly deploy to targets of opportunity that
otherwise would not be able to capture key ecological information, e.g. immediately
after a fire, flood, or insect outbreak. NEON’s construction is currently scheduled to
end in 2017, at which time there will be more than 14 000 automated terrestrial sensors
integrated into operations.

NEON is novel by design. It is the first ecological observatory linking site-based
organismal ecology with abiotic drivers and with regional spatial scaling. Taken in con-
cert, these observations embrace the cause-and-effect paradigm. It is also novel in
that each of these sub-systems has been designed with the other sub-systems in
mind, making it the first truly integrated ecological observatory. By providing mea-
surements/procedures that are traceable to nationally and internationally recognized
standards, a consistent, integrated, and interoperable approach can be used to enable
a consistent means of data management and data quality. A complete description can
be found in the NEON Science Strategy document (Schimel et al., 2011). NEON’s ap-
proach is at the forefront of many other observatories that are currently incorporating
interoperability into their design so as to enable a global “network-of-networks” (Group
on Earth Observations, 2010).

As large volumes of raw sensor data (> 100 TByr‘1) are anticipated by these ex-
tensive, emergent networked observatories, it is imperative that a comprehensive data
quality assurance and quality control philosophy be adopted. In the broadest sense,
Quality Assurance (QA) defines the overarching plan for minimizing error and maxi-
mizing quality, while Quality Control (QC) refers to the actual procedures that are im-
plemented as part of the QA plan (ISO/IEC 17025 2005, Peppler et al., 2008). While
there is no universal QA/QC system for optimizing data quality, a number of common
approaches have been implemented by large observation-based networks (Table 1).
In an effort to devise an efficient and effective quality assurance program for NEON'’s
automated terrestrial measurements, the optimal components of these various quality
assurance programs have been adopted (Taylor and Loescher, 2011).
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A core premise in the formalism of complex quality control is to scrutinize the validity
of data in a multitude of ways and to consider as many different types of error as possi-
ble (Gandin, 1969). To achieve this, NEON’s QA plan was based on a traditional “three
stage” approach to data quality control (Durre, 2008). The first stage focuses exclu-
sively on automated quality control procedures in which all acquired data are screened
by automated algorithms to identify suspect data that are then flagged for further inves-
tigation in the next stage. This second stage of QC performs data verification by means
of visual inspection; any flagged data from the previous stage is either verified as being
of poor quality or is accepted as high quality data that is evidentiary of an uncommon
event. This approach minimizes the risk of inadvertently eliminating the observation of
a rare and potentially interesting event for the sake of data quality (Essenwanger, 1969)
and is consistent with the main principle of complex QC in that no decision about the
data is made until all possible forms of QC tests have been performed (Gandin, 1988).
The third stage relies on independent auditing of the accepted data set through an in-
ternally consistent (NEON) auditing plan as well as through external input from the user
community. The end result is data that are of the highest quality and are maintained
at this level through necessary reprocessing of data and version control. It should also
be noted that a robust QA/QC plan also includes steady-state sensor calibration to
traceable standards, and field validation activity, which are not the subject of this study.

This paper will focus exclusively on the automated QC methods that occur in the first
stage; what are commonly referred to as plausibility tests (O’Brien and Keefer, 1985;
Foken and Wichura, 1996; Foken et al., 2004; Fiebrich et al., 2010). Other aspects
of automated quality control, such as redundancy tests, timeseries analysis, compre-
hensive uncertainty estimation, etc., will be addressed in a later paper. Because of
NEON's large network size and 30-yr observational lifetime, it is prudent to adopt a
“data driven approach” for the first stage of automated QC. The principal philosophy
behind this approach is to optimize human resources (both in the field and in the lab)
by maximizing computer automation (Smith et al., 1996). While the implementation of
fully automated approaches has been well documented for individual observation sites
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(Meek and Hatfield, 1994) it has proven to be challenging for large networks (Schafer
et al., 2000).

In comparison to the approaches that have been utilized by other networks (Table 1),
the methods presented here are philosophically similar but they will be implemented in
a much more uniform, comprehensive, and automated way. In addition, they are driven
almost exclusively by a data-determined approach. As much as possible, this mini-
mizes subjective, user-based decisions and attempts to automate quality choices with
guidance from existing data. While most of the techniques used by other networks also
implement automated quality control methods, decisions are often based on arbitrary
rules and can be implemented in inconsistent, ad hoc, ways. The robust, automated
QA/QC methods proposed here are further motived by the need to optimize staff effort
for field maintenance which has direct budgetary implications for long-term observa-
tions.

In practice, plausibility tests are essentially binary “pass/fail” checks that are au-
tomatically applied to every single observation (Graybeal et al., 2004). The pass/fail
parameters for each test are calculated directly from the data and stored in look-up
tables. Because these parameters will be unique for each sensor, each measurement
type, and each location, they will need to be dynamically updated on a regular basis
and, potentially, be maintained at a seasonal or monthly resolution. The theoretical ba-
sis for establishing this approach, as well as a novel methodology for implementing it,
is the objective of this paper. A simple example applied to a limited number of sensors
will also be shown. Finally, the limitations of this QC approach will be discussed.

2 Theory

2.1 Plausibility tests

Plausibility tests can broadly be categorized into three groups: range tests, persistence
tests, and stochastic tests. Here, we describe these tests and how they are applied
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to the data. It should be noted that nature of sensor data often depends upon the
phenomenon measured and not all of these tests will be applicable to every situation.
Where possible, examples are used to demonstrate the efficacy of a given test. We
apply this approach to observational data collected from a sensor, and assume (i) its
field deployment is designed to best capture the phenomena of interest and minimize
other systematic biases (Munger et al., 2012), and (ii)) more advanced data products
derived from multiple sensor datasets may require additional QA/QC approaches.

A range test checks that every recorded observation falls within reasonable minimum
and maximum values for a given location and time of year. For example, if the tempera-
ture at sea level in Hawaii was observed to be —30 °C, the range test would flag this as
implausible because this is lower than the expected minimum value (i.e. out of range).

Persistence tests check that there is a realistic fluctuation of values over a designated
period of time. Typically this involves two separate and distinct tests: a “sigma-test” and
a “delta-test”. The sigma-test uses the standard deviation or variance of the data over
a given period of time and compares it to a given threshold value (threshold definition
is discussed below). If the standard deviation is below this sigma threshold then the
observations have not varied realistically and the test is failed. The delta-test examines
the difference between pairs of subsequent observations over a given time period. If
the difference is less than the specified delta-threshold, then the observations have
not varied realistically and the test is failed. By using both of these tests in tandem,
an instrument may appear to be functioning correctly but its output that is “stuck” at
a constant or near-constant value can be identified. For example, a radiation sensor
that is completely covered with snow may report that there is adequate fluctuation
between subsequent measurements (i.e. pass the delta-test), but the variance over
a 24-h period will be lower than expected because it is not able to view the daily change
in solar radiation (i.e. fail the sigma-test). Therefore, the persistence tests would flag
the data over this 24-h period as implausible.

Stochastic tests check to ensure that changes in a time series of data are realistic
over a given period of time. They are similar to persistence tests in that they check the
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plausibility of data based on temporal variation but, rather than be concerned with the
minimum fluctuations over a given period of time, stochastic tests check for maximum
fluctuations in the data. A typical stochastic test is the “step test” in which successive
data points are compared to determine if their difference exceeds a maximum thresh-
old. As part of the stochastic testing, missing data points are also typically captured by
a null test. This test scrutinizes the number of missing data points over a given period
of time. This is distinct from a gap test, which identifies long periods of temporal discon-
tinuity in a timeseries. For example, a compromised connection between a sensor and
a data logger could result in realistic data variation (i.e. pass the step test) but have an
increased number of dropped data points (i.e. fail the null test) so the stochastic tests
would flag these data as implausible. Identifying both the duration and the frequency
of gaps in a given timeseries is crucial for later stages of quality control, such as gap-
filling, and has significance in the interpretation of natural variations, such as diurnal
cycles, seasonal cycles, etc.

2.2 Test thresholds

The automated application of these binary plausibility tests is rather straightforward.
It is, however, the estimation of the parameter “thresholds” of these tests that poses
the greatest and most critical challenge. The statistical assumptions dictate that these
threshold parameters are ideally defined by having a distribution of values that are
objectively considered “reasonable” for every sensor at every site. The range, persis-
tence, and stochasticity parameter thresholds can all be rigorously determined by con-
structing statistical distributions based on existing data over a period sufficiently long
to capture the full suite of variability. A representative distribution of range values, for
example, is more effective than simply using historical minima and maxima as there is
no way to ensure that these data, themselves, are reasonable, are of quality, and are
relevant in a changing climate.

Because the sensors monitor physical quantities that span numerous distributions, it
is not always possible to assume one fundamental statistical distribution and calculate
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the desired threshold quantities. However, as the point of interest is not with the distribu-
tion of the data but rather with a statistical quantity derived from these data, a sampling
distribution of the statistic can be constructed. Since sampling distributions are con-
structed from independent randomly sampled data, the Central Limit Theorem states
that the distribution will approach a Gaussian Distribution as the number of samples
approaches infinity (Rice, 2007). Therefore, regardless of the nature of the underlying
data, a properly constructed sampling distribution of a statistic based on these data will
always follow a Gaussian Distribution:

1 =

f(x)= 5 202 (1)
2mo

where x is any random variable, u is the population mean of the random variable, and
o is the population standard deviation of the random variable. For example, a statis-
tic for the minimum temperature at a given location will have a Gaussian Distribution
constructed from minimum temperature data-points (discrete samples) over desired
temporal periods (e.g. hourly, diurnal, monthly, seasonal, annual, decadal, etc.). From
this sampling distribution, inferences about the population mean minimum temperature
and population minimum temperature standard deviation can be used to define the
minimum temperature value that will be used as the threshold parameter for plausibility
testing.

Because the Gaussian Distribution is unimodal and symmetric, the random variable
can be normalized by the standard deviation to yield a curve with the mean value
centered at zero (see Fig. 2). When this analysis is completed, the integral between
u—-30 and u+30 represent 99.7 % of all the data and the integral over y—20 and u+2c
represent 95 % of all the data. By exploiting these properties, we can define consistent
threshold parameters for all plausibility tests and, as the data volume increases, these
values can easily be reassessed and updated.

Although these parameters can be constructed for all tests, the exact details of the
test, such as the sampling period and sample size, will vary depending on the type of
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observation and sensor. Because these emergent observatories, such as NEON, will
be measuring new physical quantities, it may be challenging at times to find enough
prior existing data to adequately construct sampling distributions. In these cases, best
possible estimates of appropriate test parameters will be constructed for initial plausibil-
ity tests and, after a sufficient amount of NEON data have been collected, new parame-
ters will be estimated and periodically updated. In this sense, this data-driven approach
requires a “spin-up time” for sufficient data to be available for informing threshold pa-
rameter calculations. As observatories continue to make long-term observations, these
threshold parameters will require regular maintenance as they will be frequently recal-
culated from augmented data records.

As is inevitable with almost all statistical inference, there is an element of arbitrary
choice in the decision level at which the test parameters are defined. Because plausi-
bility tests are typically the first stage of quality control, it is prudent to estimate these
parameter thresholds such that these tests should err on the side of heightened sensi-
tivity. This is based on the philosophy that it is better to flag good data and verify that
it is acceptable in the second stage of quality control rather than neglect to flag poor
quality data and have it be published as plausible.

For the range test, which relies on checking extreme values, it is necessary to con-
struct sampling distributions of the minima and maxima observed for a given sample
period (Table 2). For many variables, the diurnal or semi-diurnal time-scales are often
chosen as ecologically meaningful (e.g. temperature, radiation, humidity). It should also
be noted that it's not always possible to apply the range test to all variables because
an extreme value may not be statistically and/or quantitatively definable (e.g. minimum
wind speed or maximum wind direction). From the constructed distributions of extreme
values, acceptable range thresholds are defined by the threshold i + 20. By using the
twice the standard deviation, 97.5 % of all observed extreme values are considered ac-
ceptable, while the remaining 2.5 % will be flagged as questionable/outliers. At NEON,
this threshold calculation will be applied to all incoming data streams unless explicitly
stated otherwise.
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The sigma test relies on the variance/standard deviation of the sample in a pre-
determined sampling time (Table 2). Consequently, a sampling distribution of all the
sampled standard deviations of the data set will provide an inference of the mini-
mum/maximum expected variability of a given parameter. A threshold of u +2c (where
u represents the mean standard deviation of the distribution and o is the standard de-
viation of the distribution of standard deviations) ensures that only the lowest/highest
2.5 % variability data is flagged. In many cases, care must be taken when scrutinizing
the validity of this value and it will often need to be used in conjunction with other plau-
sibility tests to assure data quality. For example, if there is no precipitation over a three
day period (a very realistic case), the sigma test, alone, would reject these data as
having 0 variability. This false-failure can be corrected by having two-stage tests where
“0 variability conditions” are checked for consistency against other observations and/or
plausibility tests.

Similar to the sigma test the delta test scrutinizes the variability of a data set, but
it focuses more on the observed small-scale random variability (i.e. noise) rather than
the total sampled variability of a measured phenomenon over a specified period. The
delta test utilizes the difference between subsequent observations to check changes in
the characteristic random variability. The mean and standard deviation of this sampling
distribution represent how small-scale random variability is correlated between sub-
sequent observations throughout the desired timeseries. If this quantity changes less
than the u — 20 threshold, data are flagged as being possibly “frozen” at a given value.
Again, care must be taken with this test to ensure that observations that commonly
read 0.0 are not being inadvertently flagged when the zero values are real natural phe-
nomena. In some cases, it may be advantageous to define the delta test threshold by
the sampling precision of the instrument/data acquisition system, rather than statisti-
cal analysis of the timeseries alone. For example, if the resolution of the instrument is
0.005, then it may be more appropriate for the delta test to utilize a threshold of ~ 0.01
to test if values are frozen and only vary near the instrument’s resolution.
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The same distribution of subsequent observation differences is used to also define
the threshold for the step test (Table 2). Rather than scrutinize the smallest accept-
able change between measurements, this step test seeks to ensure that there are no
implausible, large increases in the variance structure between/among measurements.
The threshold is defined as u + 20 to ensure that only data exhibiting the largest 2.5 %
of all data discontinuities are flagged. Caution must also be taken when applying this
test and should be accompanied by subsequent visual analyses of the timeseries for its
validation. For example, wind speed and direction can typically have large step changes
that would be flagged by this approach, when indeed the data are valid.

The null test and gap test are used to monitor the loss of data which could arise
from problems associated with the instrument, the data acquisition system, or both.
The exact threshold for acceptable data loss will vary with the physical quantity being
measured, the instrument, and sampling interval. In some cases, this may simply be
defined as an arbitrary number (e.g. 0 or 1 maximum missing data value per day) or by
a local calibration cycle. For data that are sampled as a continuous daily timeseries, the
statistical approach that has been used to define all plausibility thresholds should con-
tinue to be applied. A sampling distribution of the number of missing data values over
a given sampling period should be constructed. As with other parameters, a threshold
of u + 20 is chosen for flagging data with the null test. It should be noted that these
parameters will only be representative of the sampling period, so any portion of the
timeseries in which there are known gaps or null data points (e.g. during a calibration
cycle) should be removed prior to estimating the sampling distribution. For data acqui-
sition systems that do not report times with missing data notation, a gap test must be
used to explicitly check for missing data.

These six plausibility tests are summarized in Table 2.

While a Gaussian Probability Distribution Function (Eq. 1) can be constructed man-
ually from historical climate data for many variables, this process is computationally
expensive and inefficient for the amount of data generated by large observatories. With-
out loss of generality, an algorithm that calculates the first two moments of a Gaussian
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Distribution (the mean and variance, respectively) can be constructed discretely to be:

H(d)
2 x(d,y)
*(d) =~ )
> 1
y
H(d) o
2 X(d.y) - %)
62(d) = T 3)
> 1
y

where x is a measurement statistic on a given day, d, with a historical dataset of mea-
surements on this day, H(d), and x and o? are the derived mean and variance for
this measurement statistic. For example, this could be a data set of daily maximum
temperatures observed at a specific location for 30 yr.

While this approach is computationally more efficient than manually constructing
these parameters, it does not include all available information, such as temporally
and spatially adjacent observations. Once the observatory’s (or network’s) operational
phase has begun and there are more data representative of the spatial and temporal
variation available, algorithms utilizing a combined approach for defining plausibility pa-
rameters will be more appropriate (Hasu and Aaltonen, 2011). As the spatio-temporal
correlation length scales are unique to each measurement statistic, a useful approach
is to incorporate weighting factors for their respective influence. This results in the
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following modifications to Egs. (2) and (3):

N; Dy H(d") , ,
Zdz ; wy(j,7)-wy(d',d)-x;(d",y)
— J !
x;(d) = N DL H@) (4)
22 2 wy(j,i)-wp(d’,d)
ja vy
N, Dy H(d") 2
ZZ > wylj,i)-wo(d',d)- [x;(d',y) - X;(d)]
02(d) = L2 (5)
! N; Dy H(d")
Zdz % wy(j,1)-wy(d’,d)
T

s Where N, is the set of neighboring sites measuring the same quantity, D, is the set of
adjacent dates upon which the quantity is measured, and w4 and w, represent the spa-
tial and temporal weighting factors, respectively. These weighting factors are defined
as:

0, JEN;
. 1, =
W1(/!I)= IA/'/'I)Z /
e \ 7/ jeN/{i}
0, d' ¢D,

0 Wo(d',d)= _(u)z
e\ '/, deD,

where |A;;| represents the distance between neighbouring sites in degrees, z repre-

sents the maximum allowable distance between neighboring sites, and ¢ represents

the maximum time period over which adjacent dates of observation are considered.

15 The temporal weighting is based on observations changing linearly with time and the

spatial weighting is based on traditional Barnes interpolation analysis (Barnes, 1964).
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When all of the plausibility test parameters have been defined, the tests can be
implemented in sequence for each observation at each site. In observatory operations,
the entire testing procedure is automated in which individual data streams are checked
prior to any other data manipulation (as part of the second phase of QC).

3 Results
3.1 Defining parameter thresholds

The implementation of these automated plausibility tests is illustrated using tem-
perature data from a NEON prototype relocatable site in North Sterling, Colorado
(40.461903° N, 103.029266° W; Domain 10 — Central Plains in Fig. 1). These raw tem-
perature observations were recorded in the form of voltage across a platinum resis-
tance thermometer (PRT) (Barber, 1950). It should be noted that these data were in-
tentionally not calibrated and contain numerous known errors, which is useful for the
purposes of this example.

A timeseries of 1 month of data sampled at 1s intervals in April-May 2011 were
chosen as the “historical data set” for defining the threshold parameters for plausi-
bility testing (Fig. 3). As there are no adjacent observations or historical temperature
records for this site, sampling distribution parameters described in Egs. (4) and (5) sim-
ply collapse to Egs. (2) and (3). The native sampling units of the PRT (millivolts) were
used here for the sake of brevity. In practice, much more data will be used for defining
threshold test parameters.

From this timeseries, statistical sampling distributions were constructed by randomly
sampling 100 data points, 1000 times. From each sample of 100 data points, a mean,
standard deviation were calculated according to Egs. (2) and (3), respectively. The sta-
tistical sampling distribution of these mean values is shown in Fig. 4. Note that with only
1000 samples, the shape of the distribution approaches that of the Gaussian shown in
Fig. 2. By applying the Central Limit Theorem to this distribution, the inferred population
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mean is 113.3mV. In practice, the number of data points available will be constrained
by the amount of available historical data and temporally/spatially coincident data.

Using the same sampling characteristics, a statistical sampling distribution of the
upper and lower range limits (20 for each extrema) can be constructed. From this
distribution, the value of the upper threshold range can be inferred to be: 1 +20 =
119.2 +2%(0.74) = 120.7 (see Fig. 5). It should be explicitly noted that daily extrema
were not used in constructing these sample distributions as this would place restrictions
on the requirement that the data be independent and randomly sampled (although, in
practice, a sufficiently large volume of data would remove this restriction). If a suf-
ficiently large enough data set of daily extrema were available (e.g. years of daily
maximum temperature values), then this could be used as an alternative approach
for constructing these thresholds. With this threshold parameter now known, the range
test simply consists of automatically checking all of the data to ensure that any values
above this threshold are flagged according to the above criteria.

In a similar fashion, all parameters for step testing, sigma testing, delta testing, and
null testing were calculated by constructing sampling distributions (or, as previously
mentioned, they could be defined by the inherent data sampling/acquisition rate of the
sensor).

3.2 Application to test data

The same prototype temperature observations were used to illustrate the efficacy of
plausibility testing by employing these calculated threshold parameters. A timeseries
of 2 months of data sampled at 1 s intervals is shown in Fig. 6. This represents approx-
imately 5.2 x 106 data points. These data will be considered the “test” data upon which
all of the plausibility tests should be conducted and, via visual inspection, it is obvious
that there are some poor quality data values (such as those that read “0 mV”). Using
the derived test parameters, these data were processed with all six of the automated
plausibility tests. The data that failed these tests were flagged (Fig. 7).
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The automated plausibility tests resulted in the following data quality report (with
additional annotations for explanation): BGD
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were 150 643 values outside of this range resulting in 3.2 % being flagged.

Step Test: The step threshold was found to be 0.2015mV. There were 36 val-
ues greater than this step resulting in 7.5 parts-per-million (ppm) being flagged,
relative to the size of the total data set.

Sigma Test: The sigma thresholds were found to be 2.57 to 3.56 mV. Because the
observations in this data set have considerable bias and variation (as intended),
the lower sigma threshold was much larger than the anticipated noise in the base-
line observations. For this reason, the lower variance test was not applied and the
plausibility of the variation over small time scales was assessed solely by the step
tests and delta tests. While this is not nominally optimal, it does demonstrate ap-
propriate use for datasets with large random variability (i.e. noise), such as this.
Utilizing the test for only the upper sigma range and applied over a sliding window
of 500 data points, there were 999 instances where the variance was greater than
the acceptable sigma range, resulting in 0.02 % of the data being flagged.

Delta Test: Due to the narrow range of variation in the observations, the delta
threshold was found to be negative and, consequently, set to 0 for this test. This
will happen with observational datasets of this nature and should typically have
a threshold set at the precise resolution of the sensor. For this particular prototype
dataset, this value was not available and the delta test was not applied. Nominally,
the delta threshold would be applied over a rolling domain sequence of ~ 100 data
points, or similar.

Null Test: The null threshold was found to be 12.6 missing data points. This was
applied over a moving window sequence of 50 data points resulting in 42 804
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instances where there were more missing values than the threshold causing 0.9 %
to be flagged.

— Gap Test: The gap threshold was chosen to be 5 min (this was an arbitrary choice
and not based on any statistical calculations). There were 116 time gaps greater
than this threshold resulting in 24 ppm being flagged.

By combining all of the plausibility tests together, this resulted in 194 581 data points
being flagged, or 4.1 % of all the data in question. It should be noted that many poor
observations were flagged by multiple tests, so the total number of flagged data points
was not simply the linear addition of flagged data points from individual failed tests.

The same timeseries of observations with all flagged data points removed (Fig. 8).
In practice, of course, flagged data points would undergo additional phase two quality
control before ever being permanently removed from the published data record. Gen-
eral statistics of the data flags are also maintained for regular scrutiny and auditing in
phase three QC. Consistent with NEON’s data sharing policy, records of the flagged
data and complete quality control reports will be made freely available to all interested
stakeholders. It is hoped that this policy of transparency and availability will become
the standard across all observatories and networks.

4 Discussion

4.1 Comparisons with other data quality control techniques

By using a data-driven approach to automated quality control, human interaction is min-
imized and arbitrary decisions can be avoided. This objective approach avoids ambi-
guity that has traditionally been associated with quality control among different sensors
and provides an extensive framework upon which observatories with long observa-
tional lifetimes can be sustained (e.g. NEON'’s 30-yr planned lifespan). As part of an
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overall QA plan, this approach must be used in conjunction with other quality control
and assurance procedures (phases 2-3).

In contrast to other QC approaches, this data driven approach avoids the use of
numerous assumptions. Many networks employ a subset of the plausibility tests dis-
cussed here in a way that utilizes static threshold parameters and/or relies heavily
on human-based intervention. Utilizing these automated plausibility tests not only mini-
mizes human-action, it also allows for thresholds that are updated dynamically as more
data is collected. In this sense, this QC approach “learns” from actual data and ul-
timately generates an optimized algorithm without any explicit modelling of variable
behavior. This avoids the need for assuming an underlying statistical distribution and
eliminates all prognostic modelling. This is advantageous for many variables that have
not been previously observed in a large-scale context and, therefore, are not well un-
derstood. Modelling the behavior of NEON’s 14 000 simultaneous observations is also
computationally demanding and, potentially, requires a significant level of verification
and validation before it can be implemented in any automated way.

However, this approach is not without its limitations. In particular, the lifetime of
NEON and its focus on climate change could result in a record of observations where
dynamic changes have significantly modified threshold parameters. For example, in
a warming climate, temperature values that may seem exceptionally high in 2012 may,
in fact, be well within normal conditions in 2042. As new data is collected and the
threshold parameters are updated, it is inevitable that published data will need to be
reprocessed into newer versions. Climatological averages are typically recalculated ev-
ery 10yr, so it can be expected that these changes will occur at least this frequently.

4.2 Toward better approaches

While automated data quality control through plausibility testing establishes the core
of an efficient and sophisticated observatory Quality Assurance Plan, it still requires
long-term maintenance. To this end, it must be designed with sufficient flexibility to
adapt to unforeseen quality control challenges that will undoubtedly arise in the future.

18193

BGD
9, 18175-18210, 2012

Automated QA/QC
methods

J. R. Taylor and
H. L. Loescher

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/18175/2012/bgd-9-18175-2012-print.pdf
http://www.biogeosciences-discuss.net/9/18175/2012/bgd-9-18175-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

To assist with enhancing QC flexibility at NEON, complete records of data flags and
quality control reports will be maintained throughout the lifetime of the observatory. This
permits the calculation of running statistics of how threshold parameters for particular
measurements (and locations) behave over time and will inform how to manage this
challenge.

Ideally, this record of data quality will be augmented by a thorough auditing plan
that will not only scrutinize generated data, but also the quality control of this data.
Independent, random auditing is one of the few methods through which data QC can
be tested for flaws. This should consist of audits on real sensor measurements as
well on test data sets that have expected outcomes. Failure to meet audit expectations
should result in immediate scrutiny of the QC tests and be followed by significant testing
and potentially reimplementation of the QC threshold parameters (and associated data
reprocessing). All of these details should be included as part of the data quality record
and should be communicated to the data-user community. While extensive data quality
auditing requires additional resources, it is necessary to establish the “quality of quality
control.”

One way to maintain flexibility within the quality control system is to ensure that all
raw data are always archived. As data quality control evolves, having the raw data
available ensures that reprocessing to enhance data quality can always be achieved.
As part of NEON’s QA plan, the intention of QC is to identify (and remedy) problems,
not simply eliminate data outliers. As such, no data will ever be deleted and the raw
data will be permanently maintained by NEON (and available to interested data-users).

4.3 Future applications

Automated, data-driven QC could easily be implemented at numerous other automated
sensing networks. The most obvious candidate for this is meteorological observato-
ries/networks. Often the historical construction of the infrastructure utilized by most
met services limits the capacity for such data-intensive QC. However, after an initial
investment of resources to implement this system, the maintenance required for this
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automated QC is minimal and the resulting data quality enhancement would more than
offset these costs. The question of how these automated QC tests would be applied
to historical data raises another set of issues that would need to be addressed on
a case-by-case basis.

In addition to met services, there are many existing networks (such as those in Ta-
ble 1) that could benefit from more automated QC techniques. Regardless of the mea-
surement, instrumentation, and the cyberinfrastructure, these plausibility tests can al-
most always be implemented and used to enhance data quality. It is always necessary
that this be implemented as part of an overarching QA plan and, depending on the
observations of interest, may require very thorough data auditing. For instances where
a series of data is processed using complex timeseries analysis (e.g. Fourier Trans-
forms, Wavelet Analysis, etc.), care must be taken to ensure that automated correc-
tions applied in one space do not yield spurious results in another space. For instance,
the removal of outliers from one timeseries could cause “jump discontinuities” that con-
tribute to large oscillations or “ringing” in the Fourier Transform of this timeseries. In
these cases, data quality auditing can be used to identify where risks of such results
are probable and the automated QC can be adjusted accordingly. For the vast majority
of observations, these standard plausibility tests will be sufficient for enhancing data
quality.

One of the biggest challenges for moving toward global data sets of observations
is that of network interoperability. Without standardized approaches to network obser-
vations, no two sets of data can adequately be combined in any way. By adopting
a uniform-basis for data QC, future network interoperability can be assured. While it
is obvious that different observing networks will have differing demands for QC ap-
proaches and implementation, “Phase 1” plausibility tests will almost uniformly be re-
quired in one capacity or another. Using these automated QC approaches can only
assist with enhancing data quality and, consequently, data usage.
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5 Conclusions

With the rapid growth of national and international sensor networks, the demand for
data quality control in ecology will grow to an unprecedented level. Network interoper-
ability can be best achieved by having unified approaches to QA/QC methods and, it is
hoped, that the methods presented here will act as a primer for all other networks. By
adopting methods that can be implemented rapidly, such as these, a consistent frame-
work for data management can be established. It is only through the use of these stan-
dardized approaches that global scale ecological questions can ever be addressed.
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Table 1. Example quality assurance plans currently in use at large environmental observatories.

Network and

Calibration Activities

Data Acquisition

Quality Control

Agency
Level 1 Level 2 Level 3
ARM-DOE Centralized perfor- Dynamic SOPs, Automated Standardized visual Instrument mentors,
mance verification sensor replacement quality control and quality inspection review panels, and
with lab testing with transfer standards  unit conversion data reprocessing
USCRN-NOAA Centralized perfor- Dynamic SOPs and Automated Standardized visual Internal NOAA depart-
mance verification sensor replacement quality control and quality inspection mental review
with lab testing unit conversion
Oklahoma Centralized perfor- Dynamic SOPs Automated Standardized visual User community
Mesonet-OU/OSU  mance verification quality control and quality inspection review
with lab testing unit conversion
Canadian Carbon PlI-driven, ad hoc per- Dynamic SOPs with Automated Standardized visual Internal Environ-
Program — CFCAS  formance verification transfer standards quality control and quality inspection ment Canada/user
unit conversion community review

AmeriFlux-DOE

SCAN-USDA

USGS Water
Quality Monitoring
Network-DOI

Pl-driven, ad hoc per-
formance verification

Centralized perfor-
mance verification
with de facto
acceptance

Centralized perfor-
mance verification
with on-site testing

Ad hoc SOPs with
transfer standards and
a roving system

Dynamic SOPs

Standardized SOPs
with minor dynamic
modifications

Unit conversion with
non-standardized
quality flags

Automated
quality control and unit
conversion

Daily visual quality
review at site

Ad hoc quality control
performed at local site

Standardized visual
quality inspection

Standardized visual
quality inspection

Internal DOE/user
community review

User community
review

Internal USGS Water
Service Center review

Note: The Atmospheric Radiation Monitoring Network (ARM) is supported by the United States Department of
Energy (DOE), (Stokes and Schwartz 1994) http://www.arm.gov/; the United States Climate Research Network
(USCRN) is supported by the National Oceanic and Atmospheric Administration (NOAA), (Karl et al., 1995)
http://www.ncdc.noaa.gov/crn/; Oklahoma Mesonet is supported by the University of Oklahoma (OU) and
Oklahoma State University (OSU) (McPherson et al., 2007) http://www.mesonet.org/; the Canadian Carbon
Program is supported by the Canadian Foundation for Climate and Atmospheric Science (CFCAS) (Margolis
et al., 2006) http://www.fluxnet-canada.ca/; the AmeriFlux Network is supported by the United States
Department of Energy (DOE) (Baldocchi et al., 2001) http://public.ornl.gov/ameriflux/; the Soil Climate Analysis
Network (SCAN) is supported by the United States Department of Agriculture (USDA) (Schaefer et al., 2007)
http://www.ars.usda.gov/main/main.htm; and the United States Geological Survey (USGS) water quality
monitoring network is supported by the United States Department of the Interior (DOI) (Wagner et al., 2006)
http://water.usgs.gov/owq/.
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Table 2. The six plausibility tests employed in the first phase of NEON’s data quality control.

Plausibility Test

Underlying Statistical Quantity
Sampling Distribution

Calculation

Range Test
Sigma test
Delta Test
Step Test
Null Test
Gap Test

Extreme Values

Standard Deviation

Differences of Subsequent Pairs
Differences of Subsequent Pairs
Missing Data

Large Gap of Missing Data

Max: u + 20, Min: u - 20
u-20

u — 20 (or defined by sampling)
u+20

u — o (or defined by sampling)
Defined by Sampling
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A

9 - Northern Plains

15 - Great Basin

6 - Prairie Peninsula

10 - Central Plaing

Ci \q
Legend NEON Candidate Aqu
B NEON Candidate STREON NEON Candidat

Fig. 1. NEON’s 20 eco-domains and their associated ecological research sites. “Core sites”
monitor the ecosystem continuously for 30yr while “Relocatable sites” are moved every 5—
10yrin order to address specific research questions in a given domain. Some aquatic sites also
include an embedded experiment called STREON (see the NEON Science Strategy document
for more details, Schimel et al., 2011).
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Fig. 2. Histogram of simulated data following a Gaussian distribution with normalized mean 0
(dotted red line) and standard deviation of 3. The range of values that lie between 3 standard
deviations of the mean (solid red lines) represent 99.7 % of all the data.
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Fig. 5. Statistical sampling distribution of the sample mean maximum PRT observation added
to twice the sample standard deviation.
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Fig. 6. Timeseries of platinum resistance thermometer (PRT) observations in March—-May 2011
from Domain 10: North Sterling, Colorado. These data were intentionally not calibrated and

contain known errors.
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Fig. 8. Timeseries of platinum resistance thermometer (PRT) observations in March—May 2011
from Domain 10: North Sterling, Colorado, but all of the flagged data has been removed, leaving
only observations that passed all automated plausibility tests (~4.1% of the raw data was

flagged).
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